Answer on the Question \#55539 - Chemistry - Other

Question:

1. Some PCl 5 is pumped into a 500 mL flask. The PCl 3 at equilibrium is 1.50 M . What was the initial [PCl5]?
PCl_{5} <---> $\mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$K_{\text {eq }}=2.14$
2. Keq for the reaction 2 HI <----> $\mathrm{H}_{2}+\mathrm{I}_{2}$ has a value of $1.85 \times 10^{\wedge}-2$ at 425 degrees celsius. If 0.18 mol of HI is placed in a 2.0 L flask and allowed to come to equilibrium at this temperature. What will the equilibrium of $[12\}$ be?
3. 0.020 mol of each SO 2 and O 2 and $\mathrm{So3}$ is placed in a 1.0 L flask and allowed to come to equilibrium. The equilibrium of [SO2] is found to be 0.0080 M . What is the value of keq for the reaction: $2 \mathrm{SO} 2+\mathrm{O} 2<---->2 \mathrm{SO} 3$
4. A 3.00 L flask contains $6.00 \mathrm{M} \mathrm{H} 2,6.00 \mathrm{M} \mathrm{Cl} 2,3.00 \mathrm{M} \mathrm{HCl}$ at equilibrium. An additional 15 mol of HCl is injected into the flask. What is the [CI2] when equilibrium is re- established?.

Answer:

1. Some PCl_{5} is pumped into a 500 mL flask. The PCl_{3} at equilibrium is 1.50 M . What was the initial $\left[\mathrm{PCl}_{5}\right]$?
$\mathrm{PCl}_{5}<-->\mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$\mathrm{K}_{\text {eq }}=2.14$

Let's consider the reaction equation. One can note, that the number of the moles of PCl_{5} consumed in the reaction is equal to the number of the moles of PCl_{3} and Cl_{2} produced (simple stechiometry). Then if we will look at the expression for the equilibrium constant, we can substitute the values of $\left[\mathrm{PCl}_{5}\right]$ and $\left[\mathrm{Cl}_{2}\right]$ by $\left(c_{0}-\left[P C l_{3}\right]\right)$ and $\left[P C l_{3}\right]$, respectively. Using simple algebra, we derive the initial concentration of phosphorus pentachloride c_{0} :

$$
\begin{gathered}
P C l_{5} \rightleftarrows P C l_{3}+\mathrm{Cl}_{2} \\
K_{e q}=\frac{\left[P C l_{3}\right] \cdot\left[\mathrm{Cl}_{2}\right]}{\left[P C l_{5}\right]}=\frac{\left[P C l_{3}\right]^{2}}{\left(c_{0}-\left[P C l_{3}\right]\right)}=2.14 \\
c_{0}=\frac{\left[P C l_{3}\right]^{2}+2.14 *\left[P C l_{3}\right]}{2.14}=2.6 \mathrm{M}
\end{gathered}
$$

2. Keq for the reaction 2 HI <----> $\mathrm{H} 2+\mathrm{I} 2$ has a value of $1.85 \times 10^{\wedge}-2$ at 425 degrees celsius. If 0.18 mol of HI is placed in a 2.0 L flask and allowed to come to equilibrium at this temperature. What will the equilibrium of $[12\}$ be?

The equilibrium constant expression is:

$$
K_{e q}=\frac{\left[\mathrm{H}_{2}\right] \cdot\left[I_{2}\right]}{[H I]^{2}}=1.85 \cdot 10^{-2}
$$

The equilibrium concentration of hydrogen is equal to the concentration of iodine $\left[\mathrm{H}_{2}\right]=$ [I_{2}]. Also, the equilibrium concentration of hydrogen iodide can be expressed as the difference between the initial concentration and the amount of free iodine produced: $[H I]=c_{0}-2\left[I_{2}\right]$.

$$
K_{e q}=\frac{\left[I_{2}\right]^{2}}{\left(c_{0}-2\left[I_{2}\right]\right)^{2}}
$$

Initial concentration of hydrogen iodide is the ratio of number of the moles to volume of the system:

$$
c_{0}=\frac{n}{V}=\frac{0.18}{2.0}=0.09 \mathrm{~mol} \mathrm{~L}^{-1}
$$

Using this value and solving the square equation, equilibrium iodine concentration is calculated:

$$
\left[I_{2}\right]=0.0096 \mathrm{~mol} \mathrm{~L}^{-1}
$$

3. 0.020 mol of each SO 2 and O 2 and So 3 is placed in a 1.0 L flask and allowed to come to equilibrium. The equilibrium of [SO2] is found to be 0.0080 M . What is the value of keq for the reaction: $2 \mathrm{SO} 2+\mathrm{O} 2<---->2 \mathrm{SO} 3$

Let's write the reaction equation and understand what is going on in the system.

$$
\begin{array}{cccc}
& 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftarrows & 2 \mathrm{SO}_{3} \\
& & & \\
c_{0} & 0.02 & 0.02 & 0.02 \\
\Delta & -2 x & -x & +2 x \\
{[c]} & (0.02-2 x) & (0.02-x) & (0.02+2 x)
\end{array}
$$

Then, the x is:

$$
x=\frac{0.02-0.008}{2}=0.006
$$

And equilibrium constant is:

$$
K_{e q}=\frac{(0.02-x) \cdot(0.02+2 x)^{2}}{0.008^{2}}=\frac{0.014 \cdot 0.032^{2}}{0.008^{2}}=0.224
$$

4. A 3.00 L flask contains $6.00 \mathrm{M} \mathrm{H} 2,6.00 \mathrm{M} \mathrm{Cl} 2,3.00 \mathrm{M} \mathrm{HCl}$ at equilibrium. An additional 15 mol of HCl is injected into the flask. What is the [Cl2] when equilibrium is re- established?

The reaction equation is:

$$
2 \mathrm{HCl} \rightleftarrows \mathrm{Cl}_{2}+\mathrm{H}_{2}
$$

The equilibrium constant is:

$$
K_{e q}=\frac{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{HCl}]^{2}}=\frac{6 * 6}{3^{2}}=4
$$

When HCl is added, the concentration of $C l_{2}$ will increase by x, also H_{2} concentration will increase by x, and the HCl concentration will decrease by $2 x$:

$$
\begin{gathered}
K_{e q}=\frac{(6+x)(6+x)}{(15+3-2 x)}=4 \\
x=1.662
\end{gathered}
$$

Then, new equilibrium concentration of $C l_{2}$ will be:

$$
\left[\mathrm{Cl}_{2}\right]=6+x=7.66 \mathrm{~mol} \mathrm{~L}{ }^{-1}
$$

