Answer on Question \#55490 - Chemistry - Other

Question:

Part 1: An old supply of nitrogen gas held in a 0.250 m 3 tank inside a hospital storage room exerts a pressure of 1.11 atm at 303 K . Calculate the density of the nitrogen gas in units of $(\mathrm{g} / \mathrm{L})$.

Part 2: Refer to Part 1. For waste disposal, the gas is moved to a 22.0 L container, and cooled to a temperature at which the gas pressure is $8.60 \times 103 \mathrm{~mm} \mathrm{Hg}$. Calculate the final temperature of the gas in absolute Kelvin.

Part 1:

Solution:

$\mathrm{V} 1=0.250 \mathrm{~m}^{3}=250 \mathrm{~L} ;$
$\mathrm{P} 1=1.11 \mathrm{~atm}=112470.75 \mathrm{~Pa}=112.47075 \mathrm{kPa} ;$
$\mathrm{T} 1=303 \mathrm{~K} ;$
$\mathrm{M}(\mathrm{N} 2)=28 \mathrm{gxmol}^{-1}$;
D - ?
According to the ideal gas law:
$P V=n R T ;$
P - the pressure (Pa or atm or mm Hg);
V - the volume (L or m^{3});
N - the amount of substance (mol);

T - the temperature (K);
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} ; \mathrm{PV}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{RT} ; \mathrm{D}=\frac{\mathrm{m}}{\mathrm{V}}$;
M - the molar mass $\left(\mathrm{g} \times \mathrm{mol}^{-1}\right)$;
$m=\frac{P V M}{R T} ; D=\frac{m}{V}=\frac{P V M}{R T V}=\frac{P M}{R T} ;$
$\mathrm{P}=112.47075 \mathrm{kPa}$;
$\mathrm{T}=303 \mathrm{~K} ;$
$\mathrm{M}(\mathrm{N} 2)=28 \mathrm{gxmol}^{-1}$;

$D=\frac{112.47075 \times 28}{8.314 \times 303}$;

Answer: $1.25 \mathrm{~g} / \mathrm{L}$;

Part 2

Solution:

V1 = $250 \mathrm{~L} ;$
V2 $=22.0 \mathrm{~L}$;
P1 $=112.47075 \mathrm{kPa}$;
P2 $=8.6 \times 10^{3} \mathrm{~mm} \mathrm{Hg}=1146.573 \mathrm{kPa}$;
$\mathrm{T} 1=303 \mathrm{~K}$
T2 - ?
According to the Boule's law:

$$
\begin{aligned}
& \frac{\mathrm{P} 1 \mathrm{~V} 1}{\mathrm{~T} 1}=\frac{\mathrm{P} 2 \mathrm{~V} 2}{\mathrm{~T} 2} ; \mathrm{T} 2=\frac{\mathrm{P} 2 \mathrm{~V} 2 \mathrm{~T} 1}{\mathrm{P} 1 \mathrm{~V} 1} ; \\
& \mathrm{T} 2=\frac{1146.573 \times 22 \times 303}{112.47075 \times 250}=271.82 \mathrm{~K} ;
\end{aligned}
$$

$$
\underline{T 2}=271.82 \mathrm{~K}_{i}
$$

Answer: 271.82 K

