Answer on the question \#55463 - Chemistry - General chemistry

Question:

If you have 370.0 mL of water at $25.00^{\circ} \mathrm{C}$ and add 120.0 mL of water at $95.00^{\circ} \mathrm{C}$, what is the final temperature of the mixture? Use $1.00 \mathrm{~g} / \mathrm{mL}$ as the density of water.

Solution:

Upon the mixing, the cold water is warming up and the hot water is cooling down. The exchange of the heat is summarized in a set of equations:

$$
\begin{aligned}
Q_{\text {cold }} & =m_{\text {cold }} c\left(T_{2}-T_{1-\text { cold }}\right) \\
Q_{\text {hot }} & =m_{\text {hot }} c\left(T_{2}-T_{1-h o t}\right)
\end{aligned}
$$

where the amount of heat cold water gets and hot water gives are $Q_{\text {cold }}$ and $Q_{\text {hot }}$, respectively, $m_{\text {cold }}$ and $m_{\text {hot }}$ are the masses of water added, c is water heat capacity and T_{1} and T_{2} are the initial and final temperature, respectively.

If we consider the law of conservation of energy, we find out that the $Q_{\text {cold }}$ is equal to $Q_{h o t}$:

$$
\begin{gathered}
Q_{\text {cold }}=-Q_{\text {hot }} \\
m_{\text {cold }} c\left(T_{2}-T_{1-\text { cold }}\right)=-m_{\text {hot }} c\left(T_{2}-T_{1-h o t}\right)
\end{gathered}
$$

Then, let's derive the final temperature T_{2}, taking into account assumption about $1 \mathrm{~g} / \mathrm{mL}$ density of the water:

$$
T_{2}=\frac{m_{c o l d} \times T_{1-c o l d}+m_{\text {hot }} \times T_{1-h o t}}{m_{\text {cold }}+m_{\text {hot }}}=\frac{370 \times 1 \times 298.15+120 \times 1 \times 368.15}{370 \times 1+120 \times 1}=315.3 \mathrm{~K}
$$

Answer: 315.3 K , or $42^{\circ} \mathrm{C}$

