Answer on Question #55385 - Chemistry - General chemistry

Question:

Determine standard entropy of formation at 298K for each of the following: H2(g)

H2O(g)

NH3(g)

O3(g)

12(g)

Please explain to me how you got your answer for each element.

Solution:

To get the standard entropy of simple substances we have to use standard entropy reference data

$$S^{0}(H_{2}) = 130.6 \frac{J}{mol \times K};$$

$$S^{0}(O_{3}) = 238.0 \frac{J}{mol \times K};$$

$$S^{0}(I_{2}) = 260.6 \frac{J}{mol \times K};$$

To get the standard entropy of other substances formation we have to use standard entropy reference data and the following formula:

$$\Delta S^{0}(reaction) = \sum S^{0}(products) - \sum S^{0}(reactants)$$

Reaction of water formation $H_2 + \frac{1}{2} O_2 = H_2 O$

$$\Delta S^{0}(formation) = S^{0}(H_{2}O) - S^{0}(H_{2}) - 0.5S^{0}(O_{2}) = 188.7 - 115 - 205/2 = -28.8 \frac{J}{mol \times K}$$

Reaction of ammonia formation

1/2N₂+3/2H₂=NH₃

$$\Delta S^{0}(formation) = S^{0}(NH_{3}) - 1.5S^{0}(H_{2}) - 0.5S^{0}(N_{2}) = 193 - 1.5 \times 115 - 0.5 \times 192 = -75.5 \frac{J}{mol \times K}$$

Answer:

$$S^{0}(H_{2}) = 130.6 \frac{J}{mol \times K};$$

$$S^{0}(O_{3}) = 238.0 \frac{J}{mol \times K};$$

$$S^{0}(I_{2}) = 260.6 \frac{J}{mol \times K};$$

$$\Delta S^{0}(formation, H_{2}O) = -28.8 \frac{J}{mol \times K}$$

$$\Delta S^{0}(formation, NH_{3}) = -75.5 \frac{J}{mol \times K}$$