Answer on Question #55347 – Chemistry – General chemistry

Question:

In a constant-pressure calorimeter, 65.0 mL of 0.870 M H_2SO_4 was added to 65.0 mL of 0.450 M NaOH. The reaction caused the temperature of the solution to rise from 24.09 °C to 27.16 °C. If the solution has the same density and specific heat as water, what is ΔH for this reaction (per mole of H_2O produced)? Assume that the total volume is the sum of the individual volumes.

Answer:

Conducted reaction is neutralization:

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

The amount of produced water is defined:

 $v(H_2O) = v(NaOH) = V(NaOH) \times C(NaOH) = 65 \text{ ml} \times 0.450 \text{ mol}/L = 29.25 \text{ mmol} = 29.25 \times 10^{-3} \text{ mol}$

The total mass of the solution is: $m = V\rho$, where V – the total volume (V = 65 ml + 65 ml = 130 ml) and ρ – the density of water ($\rho = 1 \text{ g/ml}$).

m = 130 ml × 1 g/ml = 130 g

Then find the heat released by this reaction:

Q = mC Δ t, where C – the specific heat for water which equals 4.2 J g⁻¹ °C⁻¹ and Δ t – the change of temperature (Δ t = 27.16 °C – 24.09 °C = 3.07 °C)

 $Q = 130 \text{ g} \times 4.2 \text{ J} \text{ g}^{-1} \circ \text{C}^{-1} \times 3.07 \circ \text{C} = 1676.22 \text{ J}$

Thus, $\Delta H = Q/v(H_2O) = 1676.22 J/29.25 \times 10^{-3} mol = 56821.02 J mol^{-1}$

www.AssignmentExpert.com