Answer on Question \#55347 - Chemistry - General chemistry

Question:

In a constant-pressure calorimeter, 65.0 mL of $0.870 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ was added to 65.0 mL of 0.450 M NaOH . The reaction caused the temperature of the solution to rise from $24.09^{\circ} \mathrm{C}$ to $27.16{ }^{\circ} \mathrm{C}$. If the solution has the same density and specific heat as water, what is ΔH for this reaction (per mole of $\mathrm{H}_{2} \mathrm{O}$ produced)? Assume that the total volume is the sum of the individual volumes.

Answer:

Conducted reaction is neutralization:
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
The amount of produced water is defined:
$\mathrm{v}\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{v}(\mathrm{NaOH})=\mathrm{V}(\mathrm{NaOH}) \times \mathrm{C}(\mathrm{NaOH})=65 \mathrm{ml} \times 0.450 \mathrm{~mol} / \mathrm{L}=29.25 \mathrm{mmol}=29.25 \times 10^{-3} \mathrm{~mol}$
The total mass of the solution is: $\mathrm{m}=\mathrm{V} \rho$, where V - the total volume $(\mathrm{V}=65 \mathrm{ml}+65 \mathrm{ml}=130 \mathrm{ml})$ and ρ - the density of water ($\rho=1 \mathrm{~g} / \mathrm{ml}$).
$\mathrm{m}=130 \mathrm{ml} \times 1 \mathrm{~g} / \mathrm{ml}=130 \mathrm{~g}$
Then find the heat released by this reaction:
$Q=m C \Delta t$, where $C-$ the specific heat for water which equals $4.2 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ and $\Delta \mathrm{t}$ - the change of temperature ($\Delta \mathrm{t}=27.16{ }^{\circ} \mathrm{C}-24.09{ }^{\circ} \mathrm{C}=3.07^{\circ} \mathrm{C}$)
$\mathrm{Q}=130 \mathrm{~g} \times 4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{O}^{-1} \times 3.07^{\circ} \mathrm{C}=1676.22 \mathrm{~J}$
Thus, $\Delta \mathrm{H}=\mathrm{Q} / \mathrm{v}\left(\mathrm{H}_{2} \mathrm{O}\right)=1676.22 \mathrm{~J} / 29.25 \times 10^{-3} \mathrm{~mol}=56821.02 \mathrm{~J} \mathrm{~mol}^{-1}$

