Answer on Question \#55344-Chemistry - General chemistry

Question:

Julie is conducting an experiment where she placed 30.0 mL of water in a calorimeter at $10.0^{\circ} \mathrm{C}$. Then, 2.5 g of A (molar mass $=48.0 \mathrm{~g} / \mathrm{mol}$), also at $10.0^{\circ} \mathrm{C}$, is added to the water in the calorimeter and the temperature of the solution increases to $29.0^{\circ} \mathrm{C}$. The following reaction is produced:
a.) What is the enthalpy of the reaction ($\left.\Delta \mathrm{H}^{\circ} \mathrm{rxn}\right)$, in $\mathrm{kJ} / \mathrm{mol}$?

Solution:

$\mathrm{n}=\mathrm{m} / \mathrm{M}_{\mathrm{w}}=2.5 \mathrm{~g} / 48.0 \mathrm{~g} \mathrm{~mol}^{-1}=0.052 \mathrm{~mol}$
$\mathrm{C}_{\text {н2O }}=\left(\mathrm{C}_{10 \mathrm{C}}+\mathrm{C}_{30 \mathrm{C}}\right) / 2=(4.178+4.192) / 2=4.185\left(\mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right)$
$\mathrm{Q}=\mathrm{m}_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{CH}_{\text {но }} \times \Delta \mathrm{T}=$ рнго $\times \mathrm{V}_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{CH}_{2} \mathrm{O} \times \Delta \mathrm{T}=1.00 \mathrm{~g} \mathrm{~mL}^{-1} \times 30.0 \mathrm{~mL} \times 4.185 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
$\times\left(29.0^{\circ} \mathrm{C}-10.0^{\circ} \mathrm{C}\right)=2385.45 \mathrm{~J}$
$\Delta \mathrm{H}=\mathrm{Q} / \mathrm{n}=\mathrm{Q} \times \mathrm{M}_{\mathrm{w}} / \mathrm{m}=2385.45 \mathrm{~J} \times 48.0 \mathrm{~g} \mathrm{~mol}^{-1} / 2.5 \mathrm{~g}=45800 \mathrm{~J} / \mathrm{mol}=45.8 \mathrm{~kJ} / \mathrm{mol}$

Answer 45.8 kJ/mol

