Answer on Question \#55230 - Chemistry - General chemistry

Question:

A student performs the following gravimetric analysis of iron ions in a water system:Fe2+ (aq) + $2 \mathrm{CO}_{3} 2-(\mathrm{aq})=\mathrm{FeCO} 3(\mathrm{~s})$ If this student used excess carbonate and obtained the following data, what was the original concentration in moles/L) of Fe2+ in the water sample?Total Volume of Solution: 100.00 mLMass of FeCO3 collected: 23.758 grams.Is this how you would solve it change 100 ml to .1 liters. $115.853 \mathrm{x}=23.758 \times .1=.02$ liters

Answer:

Not actually.
First of all in this calculation you have to pay significant attention to significant figures.
When you are transforming units, the result is as following
$100.00 \mathrm{~mL}=0.10000 \mathrm{~L}$ (5 significant figures)
$m=23.758 \mathrm{~g}$ (5 significant figures)
You have to use the scientific way of thinking - calculate the quantity of substance and then concentration
$\mathrm{n}\left(\mathrm{Fe}^{2+}\right)=\mathrm{n}\left(\mathrm{FeCO}_{3}\right)=\mathrm{m}\left(\mathrm{FeCO}_{3}\right) / \mathrm{Mw}\left(\mathrm{FeCO}_{3}\right)$
$\mathrm{Mw}\left(\mathrm{FeCO}_{3}\right)=115.8539$ (7 significant figures)
$n\left(\mathrm{Fe}^{2+}\right)=23.758 / 115.8538=0.20507$ moles (5 significant figures)
$c\left(\mathrm{Fe}^{2+}\right)=\mathrm{n}\left(\mathrm{Fe}^{2+}\right) / \mathrm{V}=0.20507 / 0.10000=2.0507$ moles $/ \mathrm{L}$ (5 significant figures)

