Answer on Question \#55213 - Chemistry - General chemistry

Question:

1-If you place 5 -grams of chlorine in 15 -centiliters of deionized water, what is its molarity? Hint: Cl molar mass is $34.45 \mathrm{~g} / \mathrm{mol}, 1 \mathrm{~cm}=1 \times 10^{-2}$ meter, SHOW YOUR WORK AND INCLUDE UNITS 2-If the absorbance of a low concentration solution is 0.62 , then we would expect the absorbance of the same solution at a higher concentration to be greater. True or False. Explain?

Answers:

1. $\mathrm{C}(\mathrm{M})$, molarity $=\mathrm{n}$ (moles) $/ \mathrm{V}(\mathrm{L})$
n (moles) $=\mathrm{m}(\mathrm{g}) / \mathrm{Mw}$ (g/moles)
$\mathrm{C}(\mathrm{M})$, molarity $=\mathrm{m}(\mathrm{g}) /(\mathrm{Mw}(\mathrm{g} /$ moles $) \times \mathrm{V}(\mathrm{L}))$
$1 \mathrm{CL}=0.01 \mathrm{~L}$
$15 \mathrm{CL}=0.15 \mathrm{~L}$
$C(M)=5(\mathrm{~g}) /(34.45(\mathrm{~g} /$ mole $) \times 0.15(\mathrm{~L}))=0.9676(\mathrm{M})$
Answer has to be rounded to 0.1 M

Molarity of chlorine is 0.1 M

*if you mean molecular chlorine $\mathrm{Mw}=68.9 \mathrm{~g} / \mathrm{mol}$, then $\mathrm{C}=0.05 \mathrm{M}$

2. True

As Beer-Lambert-Bouguer law states:
$A=\varepsilon \times c \times I$
It means that absorbance is proportional to concentration. If we keep all the parameters, except concentration, constant:
$A \sim c$
Increase of concentration leads to increase of absorbance.

