Answer on Question\#55191 - Chemistry - General Chemistry

Question:

What is the concentration of $\mathrm{Br}-(\mathrm{aq})$ in a solution prepared by mixing 75.0 mL of 0.62 M iron (III) bromide with 75.0 mL of water? Assume volumes are additive. The answer is 0.93 but I got 1.86 and 3.1 I'm not even sure anymore!

Solution:

v - The number of moles (mol);
V - The volume (L);
C - The molar concentration (mol $\times \mathrm{L}^{-1}$);
$C=\frac{v}{V} ;$
$\mathrm{V} 1=0075 \mathrm{~L} ; \quad \mathrm{C}\left(\mathrm{FeBr}_{3}\right)=0.62 \mathrm{M}$;
$v\left(\mathrm{FeBr}_{3}\right)=\mathrm{C}\left(\mathrm{FeBr}_{3}\right) \times \mathrm{V} 1$;
$v\left(\mathrm{FeBr}_{3}\right)=0.62 \times 0.075=0.0465 \mathrm{~mol} ;$
The molecule of FeBr_{3} contains $3 \mathrm{Br}^{-}$ions. According to this statement: $v\left(\mathrm{Br}^{-}\right)=v(\mathrm{FeBr} 3) \times 3$;
$v\left(\mathrm{Br}^{-}\right)=3 \times 0.0465=0.1395 \mathrm{~mol} ;$
$\mathrm{V} 2=\mathrm{V} 1+\Delta \mathrm{V} ; \quad \Delta \mathrm{V}=0.075 \mathrm{~L} ; \quad \mathrm{V} 2=0.075+0.075=0.15 \mathrm{~L} ;$
$C 2(\mathrm{Br})=\frac{v(\mathrm{Br})}{V 2}$;
$\mathrm{C} 2\left(\mathrm{Br}^{-}\right)=\frac{0.1395}{0.15}=0.93 \mathrm{~mol} \times \mathrm{L}^{-1}$;
$\mathrm{C} 2\left(\mathrm{Br}^{-}\right)=0.93 \mathrm{~mol} \times \mathrm{L}^{-1}$;
Answer: 0.93 M ;

