## Answer on Question \#55173 - Chemistry - General chemistry

## Question:

Consider a bonding electron in a diatomic molecule from the molecular orbital point of view. If the probabilities of finding the electron in atomic orbitals $\Psi_{\mathrm{A}}$ and $\Psi_{\mathrm{B}}$ are 0.25 and 0.75, respectively, what is the LCAO wave function for the electron (Neglect overlap).

## Answer:

$\psi=\mathrm{C}_{1} \psi_{\mathrm{A}}+\mathrm{C}_{2} \psi_{\mathrm{B}}$.
$\Psi_{\mathrm{A}}$ and $\Psi_{\mathrm{B}}$ are orthonormal which means:

$$
\begin{gathered}
\frac{1}{4}=\int C_{1} \Psi_{A} C_{1} \Psi_{A} d V=C_{1}^{2} \\
C_{1}= \pm \frac{1}{2}
\end{gathered}
$$

Likewise:

$$
\begin{gathered}
C_{2}^{2}=\frac{3}{4} \\
C_{2}^{2}= \pm \frac{\sqrt{3}}{2}
\end{gathered}
$$

We have to possible answer:

$$
\begin{aligned}
\psi & =-\frac{1}{2} \psi_{\mathrm{A}}+\frac{\sqrt{3}}{2} \psi_{\mathrm{B}} \\
\psi & =\frac{1}{2} \psi_{\mathrm{A}}-\frac{\sqrt{3}}{2} \psi_{\mathrm{B}}
\end{aligned}
$$

www.AssignmentExpert.com

