Answer on Question \#54890 - Chemistry - Inorganic Chemistry

Question:

A student heated ($1.30 \times 10^{\wedge} 0$) grams of copper(II) sulfate pentahydrate and found the anhydrous salt weighed $\left(7.5800 \times 10^{\wedge}-1\right)$ grams. What was this student's experimental mass percent water?

Solution:

The mass percent of water is given by equation:

$$
\omega=\frac{m_{\text {H } 2 \mathrm{O}}}{m_{\text {salt }}} \cdot 100 \%
$$

Where
$m_{H 2 O}$ - is the mass of water ($\left.6.626070040(81) \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)$,
$m_{\text {salt }}$ - is the mass of hydrated salt
So as mass of hydrated salt is the sum of water mass and mass of anhydrous salt, we can find mass of lost water:

$$
m_{\text {H2O }}=m_{\text {CuSO } 4.5 \mathrm{H} 2 \mathrm{O}}-m_{\text {CuSO } 4}
$$

So, the mass percent of water is:
$\omega=\frac{m_{\text {CuSO } 4 \cdot 5 \mathrm{H} 2 \mathrm{O}}-m_{\text {CuSO }}}{m_{\text {CuSO } 4 \cdot 5 \mathrm{H} 2 \mathrm{O}}} \cdot 100 \%$
$\omega=\frac{1.3 \cdot 10^{0}-7.58 \cdot 10^{-1}}{1.3 \cdot 10^{0}} \cdot 100 \%=41.69 \%$

Answer: $\omega=41.69 \%$

