Answer on Question \#54858 - Chemistry - Physical chemistry

Question:

In a buffer solution the ratio of concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ is 1:1 when it changes in 2:1 what will be the value of pH of buffer? and how?
(1) Increase; (2) Decrease; (3) No change

Solution

There are the following ionic equilibria in a buffer solution:
$\mathrm{NH}_{4} \mathrm{OH}=\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$
conjugated acid conjugated base
The value of pH of a buffer solution can be calculated using the following equation
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}($ acid $)-\lg \frac{\mathrm{C}_{\text {acid }}}{\mathrm{C}_{\text {base }}}$
K_{a} for $\mathrm{NH}_{4} \mathrm{Cl}=5.6 \times 10^{-10}$
If the ratio of concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ is 1:1 then
$\mathrm{pH}=-\lg \left(5.6 \times 10^{-10}\right)-\lg (1 / 1)=9.25$
If the ratio of concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ is $2: 1$ then
$\mathrm{pH}=-\lg \left(5.6 \times 10^{-10}\right)-\lg (2 / 1)=8.95$
So, the pH will decrease.

Answer: (2) Decrease

