Answer on Question \#54746 - Chemistry - Other

Question:

1. How many calories of heat are required to raise the temperature of 23.4 kg of glass from $31{ }^{\circ} \mathrm{c}$ to 650c?
2. How many joules of energy are required to raise the temperature of exactly eight fluid ounces of pure water from room temperature?

Answer:

1. The specific heat capacity of glass equals $0.84 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$. Therefore the heat required to raise the temperature by $34^{\circ} \mathrm{C}\left(\Delta \mathrm{T}=65^{\circ} \mathrm{C}-31^{\circ} \mathrm{C}=34^{\circ} \mathrm{C}\right)$ is:
$\mathrm{Q}=\mathrm{Cm} \Delta \mathrm{T}$, where C -the specific heat, $\mathrm{m}-$ the mass.
$\mathrm{Q}=0.84 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right) \times 23400 \mathrm{~g} \times 34^{\circ} \mathrm{C}=668304 \mathrm{~J}$
If $1 \mathrm{kcal}=4184 \mathrm{~J}$, then $\mathrm{Q}=668304 / 4184 \mathrm{kcal}=159.73 \mathrm{kcal}=159730$ calories
2. Eight fluid ounces equals 236.5882 ml . This corresponds to 236.5882 g of water (the density of water is $1 \mathrm{~g} / \mathrm{ml}) .1 \mathrm{cal}$ is the energy required to heat 1 g of water by $1^{\circ} \mathrm{C}$.
Thus, the heat needed to raise the temperature from $25^{\circ} \mathrm{C}$ (room temperature) to $65^{\circ} \mathrm{C}$ id determined by the equation:
$\mathrm{Q}=\mathrm{m} \Delta \mathrm{T}, \mathrm{m}-$ the mass of water and $\Delta \mathrm{T}=65^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=40^{\circ} \mathrm{C}$.
$\mathrm{Q}=236.5882 \mathrm{~g} \times 40^{\circ} \mathrm{C}=9.464 \mathrm{kcal}$
The same value in Joules is: $\mathrm{Q}=4.184 \mathrm{~kJ} \times 9.464 \mathrm{kcal}=39.595 \mathrm{~kJ}=39595$ Joules
