Question:

What is the wavelength in meters of an electron (mass = $9.1094 \times 10-31$ kg) that has been accelerated to 70.3% of the speed of light?

Solution:

The wavelength of a particle is given by equation:

$$\lambda = \frac{h}{mv}$$

Where

h is the Planck constant (6.626070040(81)×10⁻³⁴J·s),

m is the particle's rest mass,

v is the speed of particle.

So as electron has been accelerated to 70.3% of the speed of light, its speed is equal:

$$v = \frac{70.3 \cdot c}{100}$$

Where

c is the speed of light $(3.00 \times 10^8 \text{ m/s})$

So, the wavelength of an electron is:

$$\lambda = \frac{6.626070040(81) \times 10^{34} J \cdot s}{9.1094 \times 10^{-31} \times 70.3 \times 3 \times 10^8} = 0.3449 \times 10^{-9} \,(m)$$

Answer:

$$\lambda = 0.3449 \times 10^{-9} (m)$$