Answer on Question \#54742 - Chemistry - General Chemistry

Task:

30.0 mL of 0.512 M sulfuric acid was added to 25.0 mL of 0.666 M sodium hydroxide.
a. Write the balanced chemical equation.
b. Determine the molarity of either acid or base remaining after the reaction.
c. Find the molarity if a 50.00 mL aliquot of this solution is diluted to 250 mL .

Answer:

a. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH}=\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
b. According to the equestion, $\mathrm{n}(\mathrm{NaOH})=2 \cdot \mathrm{n}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
$n=C_{M} \cdot V$
$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.030 \cdot 0.512=0.015 \mathrm{~mol}$
$n(\mathrm{NaOH})=0.025 \cdot 0.666=0.017 \mathrm{~mol}$
At the same time, the required amount of NaOH is: $n(\mathrm{NaOH})^{*}=0.1536 \cdot 2=0.3072 \mathrm{~mol}$ So that in this situation NaOH is used fully, and the amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ left is:
$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)_{\text {left }}=0.015-\frac{0.017}{2}=0.007 \mathrm{~mol}$
New molarity of that sulfuric acid will be:

$$
C_{M}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)_{\text {left }}=\frac{0.007}{0.03+0.025}=0.127 \mathrm{M}
$$

c. A 50.00 mL aliquot of this solution contains sulfuric acid:
$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)_{\text {aliquot }}=\frac{0.007}{55} \cdot 50=0.0064 \mathrm{~mol}$
If it is diluted to 250 ml , new molarity will be:
$C_{M}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)_{\text {aliquot }}=\frac{0.0064}{0.25}=0.025 \mathrm{M}$

