Answer on Question \#54725 - Chemistry - Inorganic Chemistry

Question:

It is your first day of work in your new laboratory job. You are asked to prepare 700 mL of PBS (phosphate buffered saline). The PBS needs to be pH 7.40 , with 25 mM phosphate and 140 mM NaCl . You are given a bottle of $\mathrm{NaCl}(\mathrm{FW}=58.45)$, a $1.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ stock solution, and a 1.00 M NaH 2 PO 4 stock solution. Describe how to prepare this buffer. (For H3PO4: pK1 $=2.12, \mathrm{pK2}=7.21, \mathrm{pK} 3=12.66$)

Answer:

The pH of the buffer is defined by the ratio of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$:
$\mathrm{pH}=6.86-\lg \left[\mathrm{NaH}_{2} \mathrm{PO}_{4}\right] /\left[\mathrm{Na}_{2} \mathrm{HPO}_{4}\right]$,
Thus, $\operatorname{Ig}\left[\mathrm{NaH}_{2} \mathrm{PO}_{4}\right] /\left[\mathrm{Na}_{2} \mathrm{HPO}_{4}\right]=6.86-\mathrm{pH}=6.86-7.40=-0.54$,
and
$\left[\mathrm{NaH}_{2} \mathrm{PO}_{4}\right] /\left[\mathrm{Na}_{2} \mathrm{HPO}_{4}\right]=0.2884$
At the same time the total amount of phosphate anions, which should be in 700 ml , equals:
$v($ Total $)=v\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)+v\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=25 \mathrm{mM} \times 700 \mathrm{ml}=0.0175 \mathrm{~mol}$
If $\mathrm{v}\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)=0.2884 \times \mathrm{v}\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$, then
$0.2884 \times v\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)+v\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=0.0175 \mathrm{~mol}$
$v\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=0.01358$ mole
and
$\mathrm{v}\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)=0.2884 \times \mathrm{v}\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=0.00392 \mathrm{~mol}$
The volumes of 1 M solutions needed to get the mentioned above amounts of phosphates are:
$v\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=0.01358$ mole corresponds to 13.58 ml of $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
$v\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)=0.00392 \mathrm{~mol}$ corresponds to 3.92 ml of $1 \mathrm{M} \mathrm{NaH} \mathrm{NO}_{4}$
After mixing the portions of phosphates NaCl is added. Its amount in 700 ml should be:
$v(\mathrm{NaCl})=140 \mathrm{mM} \times 700 \mathrm{ml}=0.098 \mathrm{~mol}$.
Thus, the needed mass is:
$\mathrm{m}(\mathrm{NaCl})=\mathrm{v}(\mathrm{NaCl}) \times \mathrm{FW}=0.098 \times 58.45 \mathrm{~g}=5.7281 \mathrm{~g}$
In the end, after mixing appropriate volumes of phosphates and solid NaCl , the final mixture is diluted with water to 700 ml .

