Answer on Question \#54720 - Chemistry - General Chemistry

Question:

The balanced equation for the reaction of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, and oxygen in an acetylene torch is $2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.

In this reaction the number of grams of oxygen required to react with 0.13 g of acetylene is
\qquad .

Answer:

Molar mass of acetylene is $26.04 \mathrm{~g} / \mathrm{mol}$. Molar mass of oxygen is $31.9988 \mathrm{~g} / \mathrm{mol}$.

From the balanced equation it follows:

2 mol * $26.04 \mathrm{~g} / \mathrm{mol}$ of acetylene react with $\mathbf{5 ~ m o l} * 31.9988 \mathrm{~g} / \mathrm{mol}$
then $\mathbf{0 . 1 3 g}$ of acetylene react with $\mathbf{x g}$ of oxygen

$$
x=5 * 31.9988 * \frac{0.13}{2 * 26.04}=0.3994 \approx 0.40 g
$$

Answer: 0.40 g of oxygen is required to react with 0.13 g of acetylene.

