Answer on the question \#54716 - Chemistry - General chemistry

Question:

Balance the chemical equation given below, and determine the number of grams of MgO are needed to produce 20.0 g of Fe 2 O 3.
\qquad $\mathrm{MgO}(\mathrm{s})+$ \qquad $\mathrm{Fe}(\mathrm{s}) \rightarrow$ \qquad Fe2O3(s) + \qquad $\mathrm{Mg}(\mathrm{s})$

Answer:

$3 \mathrm{MgO}(\mathrm{s})+2 \mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe} 2 \mathrm{O} 3(\mathrm{~s})+3 \mathrm{Mg}(\mathrm{s})$
According to the equation, the number of the moles of MgO and Fe 2 O 3 relate as $3 / 1$:

$$
\frac{n(\mathrm{MgO})}{3}=n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)
$$

The number of grams is proportional to the number of moles with the factor of molar mass:

$$
\frac{m(M g O)}{M(M g O)}=n(M g O), \quad \frac{m\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}{M\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}=n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)
$$

Molar mass of MgO is $40.3044 \mathrm{~g} / \mathrm{mol}$, molar mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is $159.69 \mathrm{~g} / \mathrm{mol}$. Then, we can derive the expression for the mass of MgO :

$$
\begin{gathered}
m(M g O)=n(M g O) * M(M g O)=n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right) * M(\mathrm{MgO}) * 3=\frac{m\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}{M\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)} * M(\mathrm{MgO}) * 3 \\
m(M g O)=\frac{20.0}{159.69} * 40.3044 * 3=15.14 \mathrm{~g}
\end{gathered}
$$

