Answer on the question \#54713 - Chemistry - General chemistry

Question:

Sodium azide $\left(\mathrm{NaN}_{3}\right)$ yields N_{2} gas when heated to $300{ }^{\circ} \mathrm{C}$, a reaction used in automobile air bags.

If 1.00 mol of N_{2} has a volume of 47.0 L under the reaction conditions, how many liters of gas can be formed by heating 39.0 g of NaN_{3} ? The reaction is:
$2 \mathrm{NaN}_{3} \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{Na}$

Answer:

According to the reaction equation, the number of the moles of the sodium azide and nitrogen relates as:

$$
\frac{n\left(\mathrm{NaN}_{3}\right)}{2}=\frac{n\left(N_{2}\right)}{3}
$$

The number of the moles of the sodium azide is:

$$
n\left(\mathrm{NaN}_{3}\right)=\frac{m\left(\mathrm{NaN}_{3}\right)}{M\left(\mathrm{NaN}_{3}\right)}=\frac{39.0}{65}=0.6 \mathrm{~mol}
$$

Then, the number of the moles of nitrogen gas is:

$$
n\left(N_{2}\right)=n\left(\mathrm{NaN}_{3}\right) * \frac{3}{2}=0.6 * \frac{3}{2}=0.9 \mathrm{~mol}
$$

The volume of nitrogen is:

$$
V\left(N_{2}\right)=n\left(N_{2}\right) * 47=42.3 L
$$

