Answer on Question \#54712 - Chemistry - General chemistry

Question:

Ethyl alcohol is prepared industrially by the reaction of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, with water.

What is the percent yield of the reaction if 4.8 g of ethylene gives 4.7 g of ethyl alcohol?
$\mathrm{C}_{2} \mathrm{H}_{4}$ Ethylene $(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ Ethylalcohol(I)
Express your answer using two significant figures.
Answer:
The number of moles of ethylene is:
$\mathrm{v}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=\mathrm{m}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) / \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=4.8 \mathrm{~g} /\left[(24+4) \mathrm{g} \mathrm{mol}^{-1}\right]=0.1714 \mathrm{~mol}$
The number of moles of ethyl alcohol is:
$\mathrm{v}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=\mathrm{m}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) / \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=4.7 \mathrm{~g} /\left[46 \mathrm{~g} / \mathrm{mol}^{-1}\right]=0.1022 \mathrm{~mol}$
If the yield of reaction is 100%, all ethylene is transformed into ethyl alcohol giving 0.1714 moles of the product.

Therefore, the yield of the reaction equals:
$Y=\left[v\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) / \mathrm{v}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{\text {teor }}\right] \times 100 \%$,
where $\mathrm{v}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{\text {teor }}$ - the number of moles of ethanol upon 100% conversion of ethylene.
Thus, $\mathrm{Y}=[0.1022 \mathrm{~mol} / 0.1714 \mathrm{~mol}] \times 100 \%=59.61 \%$

