Answer on Question #54712 – Chemistry – General chemistry

Question:

Ethyl alcohol is prepared industrially by the reaction of ethylene, C_2H_4 , with water.

What is the percent yield of the reaction if 4.8 g of ethylene gives 4.7 g of ethyl alcohol? C_2H_4 Ethylene(g)+ $H_2O(I) \rightarrow C_2H_6O$ Ethylalcohol(I) Express your answer using two significant figures.

Answer:

The number of moles of ethylene is:

 $v(C_2H_4) = m(C_2H_4)/M(C_2H_4) = 4.8 \text{ g/}[(24+4) \text{ g mol}^{-1}] = 0.1714 \text{ mol}$

The number of moles of ethyl alcohol is:

 $v(C_2H_5OH) = m(C_2H_5OH)/M(C_2H_5OH) = 4.7 g/[46 g/mol^{-1}] = 0.1022 mol$

If the yield of reaction is 100%, all ethylene is transformed into ethyl alcohol giving 0.1714 moles of the product.

Therefore, the yield of the reaction equals:

 $Y = [v(C_2H_5OH)/v(C_2H_5OH)_{teor}] \times 100\%$

where $v(C_2H_5OH)_{teor}$ – the number of moles of ethanol upon 100% conversion of ethylene.

Thus, Y = [0.1022 mol/0.1714 mol] ×100% = 59.61 %

www.AssignmentExpert.com