Answer on Question\#54709 - Chemistry - General Chemistry

Question 1:

When methane (CH 4) burns, it reacts with oxygen gas to produce carbon dioxide and water. The unbalanced equation for this reaction is
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
This type of reaction is referred to as a complete combustion reaction.

Solution:

The unbalanced equation for this reaction is
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ;$
The balanced equation is
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ;$

Question 2:

What mass of carbon dioxide is produced from the complete combustion of $9.00 \times 10-3 \mathrm{~g}$ of methane?
Express your answer with the appropriate units.

Solution:

$m\left(\mathrm{CH}_{4}\right)=9.00 \times 10^{-3} \mathrm{~g}$;
$\mathrm{v}=\mathrm{m} / \mathrm{M}$;
$\mathrm{v}\left(\mathrm{CH}_{4}\right)=\mathrm{m}\left(\mathrm{CH}_{4}\right) / \mathrm{M}\left(\mathrm{CH}_{4}\right)$;
$v\left(\mathrm{CH}_{4}\right)=5.625 \times 10^{-4} \mathrm{~mol}$;
According to the balanced equation of the reaction: $v(\mathrm{CH} 4): v(\mathrm{CO} 2)=1: 1$;
$\mathrm{v}\left(\mathrm{CH}_{4}\right)=\mathrm{v}\left(\mathrm{CO}_{2}\right)$;
$\mathrm{M}\left(\mathrm{CO}_{2}\right)=44 \mathrm{~g} / \mathrm{mol} ;$
$m\left(\mathrm{CO}_{2}\right)=\mathrm{M}\left(\mathrm{CO}_{2}\right) \times v\left(\mathrm{CO}_{2}\right)$;
$m\left(\mathrm{CO}_{2}\right)=0,02475 \mathrm{~g}$
Answer: $2.475 \times 10-2 \mathrm{~g}$

Question 3:

What mass of water is produced from the complete combustion of $9.00 \times 10-3 \mathrm{~g}$ of methane? Express your answer with the appropriate units.

Solution:

$\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol}$;
According to the balanced equation of the reaction: $v\left(\mathrm{CH}_{4}\right): v\left(\mathrm{H}_{2} \mathrm{O}\right)=1: 2$;
$v\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{v}\left(\mathrm{CH}_{4}\right) \times 2=1.125 \times 10^{-3} \mathrm{~mol} ;$
$\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right) \times v\left(\mathrm{H}_{2} \mathrm{O}\right)=0.02025=2.025 \times 10^{-2} \mathrm{~g}$
Answer: $2.025 \times 10^{-2} \mathrm{~g}$

Question 4:

What mass of oxygen is needed for the complete combustion of $9.00 \times 10-3 \mathrm{~g}$ of methane? Express your answer with the appropriate units.

Solution:

$\mathrm{M}\left(\mathrm{O}_{2}\right)=32 \mathrm{~g} / \mathrm{mol} ;$
According to the balanced equation of the reaction: $\mathrm{v}\left(\mathrm{CH}_{4}\right): \mathrm{v}\left(\mathrm{O}_{2}\right)=1: 2$;
$\mathrm{v}\left(\mathrm{O}_{2}\right)=\mathrm{v}\left(\mathrm{CH}_{4}\right) \times 2=1.125 \times 10^{-3} \mathrm{~mol} ;$
$\mathrm{m}\left(\mathrm{O}_{2}\right)=\mathrm{M}\left(\mathrm{O}_{2}\right) \times \mathrm{v}\left(\mathrm{O}_{2}\right)=0.036=3.6 \times 10^{-2} \mathrm{~g}$
Answer: $3.6 \times 10^{-2} \mathrm{~g}$

