Answer on Question \#54695 - Chemistry - General Chemistry

Question:

A sample of naturally occurring silicon consists Si-28 (amu = 27.9769), Si-29 (amu = 28.9765) and $\mathrm{Si}-30$ (amu $=29.9738$). If the atomic mass of silicon is 28.0855 and the natural abundance of $\mathrm{Si}-29$ is 4.67%, what are the natural abundances of $\mathrm{Si}-28$ and $\mathrm{Si}-30$?

If you could explain how to solve this it would be greatly appreciated.

Answer:

Let the abundance of $\mathrm{Si}-28$ be $\mathrm{x} \%$, the abundance of $\mathrm{Si}-30$ is ($1-0.0467-\mathrm{x})$. The mass of the sample is the weighted average of the three constituents.
$28.9765^{*} 0.0467+27.9769^{*} x+29.9738^{*}(1-0.0467-x)=28.0855$
$=>28.9765^{*} 0.0467+27.9769^{*} x+29.9738^{*} 0.9533-29.9738^{*} x=28.0855$
$=>27.976$ * $^{*} x-29.9738^{*} x=28.0855-28.9765^{*} 0.0467-29.9738^{*} 0.9533$
$=>x^{*}-1.9969=-1.84173$
=> x $=0.9223$
$1-x-0.0467=0.031$

The abundance of $\mathbf{S i - 2 8}$ is $\mathbf{9 2 . 2 3 \%}$ and the abundance of $\mathbf{S i - 3 0}$ is $\mathbf{3 . 1 \%}$

