Answer on Question \#54559 - Chemistry - General chemistry

Question:

Benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, is a weak acid with $\mathrm{Ka}=6.46 \times 10-5.40 .00 \mathrm{~mL}$ of 0.100 M benzoic acid were mixed with 10.00 mL of 0.200 M sodium hydroxide. Bearing in mind the assumptions mentioned in the last part of the introduction, Calculate (a) the concentration of the sodium benzoate formed

Answer:
First of all let's find the number of moles for benzoic acid and sodium hydroxide:
$v\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)=\mathrm{C}_{1} \mathrm{~V}_{1}$, where $\mathrm{C}_{1}-$ the concentration of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ and V_{1} - the volume of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.
$\mathrm{v}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)=\mathrm{C}_{1} \mathrm{~V}_{1}=0.1 \mathrm{M} \times 0.04 \mathrm{~L}=4 \times 10^{-3} \mathrm{~mol}$
For NaOH , the same equation is used:
$\mathrm{v}(\mathrm{NaOH})=\mathrm{C}_{2} \mathrm{~V}_{2}$, where C_{2} - the concentration of NaOH and $\mathrm{V}_{2}-$ the volume of NaOH .
$\mathrm{v}(\mathrm{NaOH})=\mathrm{C}_{2} \mathrm{~V}_{2}=0.2 \mathrm{M} \times 0.01 \mathrm{~L}=2 \times 10^{-3} \mathrm{~mol}$.
According to that 1 mole of NaOH reacts with 1 mole of benzoic acid producing 1 mole Sodium benzoate,
the number of moles for $\mathrm{Na}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)$ is:
$\mathrm{v}\left(\mathrm{Na}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)\right)=2 \times 10^{-3} \mathrm{~mol}$
After the reaction the total volume is the sum of the volumes of the reagent solutions:
$V=10 \mathrm{ml}+40 \mathrm{ml}=50 \mathrm{ml}$
Thus, the concentration of Sodium Benzoate is:
$\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)=\mathrm{v}\left(\mathrm{Na}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)\right) / \mathrm{V}=2 \times 10^{-3} \mathrm{~mol} / 0.05 \mathrm{~L}=0.04 \mathrm{M}$

