Answer on Question \#54475, Chemistry / General chemistry

Question:

The interatomic distance of ${ }^{14} \mathrm{~N}^{16} \mathrm{O}$ molecule is 115.1 pm . Calculate
(i) its reduced mass,
(ii) its moment of inertia,
(iii) the wave number of the line corresponding to lowest absorption in m^{-1} Unit, and
(iv) the energy in m^{-1} unit for the transition $\mathrm{J}=2$ to $\mathrm{J}=3$.

Solution:

(i) The mass of a nitrogen atom is 14.003 amu ;
the mass of an oxygen atom is 15.995 amu ;
and the conversion factor is $1.6605 * 10^{-27} \mathrm{~kg} / \mathrm{amu}$.
The reduced mass is
$\mu=\frac{\mu_{N} \mu_{o}}{\mu_{N}+\mu_{o}}$
$\mu=\frac{14.003 * 15.995}{14.003+15.995}=7.4664 \mathrm{amu}=7.4664 * 1.6605 * 10^{-27} \mathrm{~kg}=1.24 * 10^{-26} \mathrm{~kg}$
(ii) The moment of inertia is

$$
I=\mu R^{2}=1.24 * 10^{-26} *\left(115.1 * 10^{-12}\right)^{2}=1.64 * 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(iii) The rotational constant is

$$
\bar{B}=\frac{h}{8 \pi^{2} c I}
$$

$$
\bar{B}=\frac{6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{\left(8 \pi^{2}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.64 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}\right)}=170.6 \mathrm{~m}^{-1}
$$

Since the energy at which each "line" is measured is given by $\mathrm{E}_{\rho}-\mathrm{E}_{\mathrm{J}}$, the shortest line or lowest energy transition occurs for $\mathrm{J}=0-->\mathrm{J}=1$;
Wavenumber is

$$
\begin{gathered}
F=B J^{\prime}\left(J^{\prime}+1\right)-B J(J+1)=B(1(1+1)-0(0+1))=2 B=2 * 170.6= \\
=341.2 \mathrm{~m}^{-1}
\end{gathered}
$$

(iv) $E=B J^{\prime}\left(J^{\prime}+1\right)-B J(J+1)=B(3(3+1)-2(2+1))=6 B=6 * 170.6 \mathrm{~m}^{-1}$

$$
E=1023.6 \mathrm{~m}^{-1}
$$

