Answer on Question \#52792 - Chemistry - Other

Question:

In determination percent $\mathrm{Na}_{3} \mathrm{PO}_{4}$ as $\mathrm{P}_{2} \mathrm{O}_{5} \%$ what is equivalent gram $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{E}=\mathrm{m} / \mathrm{n}$ what is n for $\mathrm{P}_{2} \mathrm{O}_{5}$?

Answer:
$\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{Na}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4}$
The molecular weights for $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ are 164 and $142 \mathrm{~g} / \mathrm{mol}$, respectively.
Thus, the mass fraction for $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{w}(\%)=\left[\mathrm{M}_{\mathrm{w}}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right) / \mathrm{M}_{\mathrm{w}}\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)\right] \times 100 \%=86.59 \%$
The mass fraction for $\mathrm{Na}_{3} \mathrm{PO}_{4}$ from $\mathrm{P}_{2} \mathrm{O}_{5} \%$ is: $\mathrm{w}(\%)=\left[\mathrm{M}_{\mathrm{w}}\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right) / \mathrm{M}_{\mathrm{w}}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)\right] \times 100 \%=100 / \mathrm{w}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)=$ 115.49 \%

The equivalent gram for $\mathrm{P}_{2} \mathrm{O}_{5}$ is $\mathrm{M}_{\mathrm{w}} / 2$ which equals $142 \mathrm{~g} \mathrm{~mol}^{-1} / 2$ eq mol $^{-1}=71 \mathrm{~g} / \mathrm{eq}$
An equivalent is of $2(n=2)$, because the coefficient at the product $\left(\mathrm{Na}_{3} \mathrm{PO} 4\right)$ in the reaction equals 2 . It means that the one molecule of $\mathrm{P}_{2} \mathrm{O}_{5}$ gives 2 molecules $\mathrm{Na}_{3} \mathrm{PO}_{4}$ or a half of $\mathrm{P}_{2} \mathrm{O}_{5}$ forms 1 molecule of $\mathrm{Na}_{3} \mathrm{PO}_{4}$.

