Let's first convert grams of water to moles of water (molar mass of water is $18 \mathrm{~g} / \mathrm{mol}$):

$$
1255 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \cdot\left(\frac{1 \mathrm{~mol}}{18.0 \mathrm{~g}}\right)=69.7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} .
$$

The amount of heat released when 1 mol of vapor condenses is called a molar heat of condensation (Δ Hcond):

$$
\Delta H v a p=-\Delta H c o n d
$$

The molar heat of vaporization of water is $\Delta H v a p=40.7 \mathrm{~kJ} / \mathrm{mol}$.
Then, ΔH cond $=-40.7 \mathrm{~kJ} / \mathrm{mol}$ and the next step is a convertion from moles of water to ΔH, multiplying by the ΔH cond:

$$
\Delta H=69.7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \cdot \frac{-40.7 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=-2837 \mathrm{~kJ} .
$$

The negative sign indicate that heat is given off.
Therefore, the process will release $2837 \boldsymbol{k J}$ of heat.

