Answer on Question \#52688, Chemistry, Other

Question:

For the reaction:
$A \rightleftharpoons B+C$
the equilibrium constant is $3.0 \times 10-6$. What is the concentration of B at equilibrium if A was originally 0.10 M ?

Answer:

Initial concentrations:
$[\mathrm{A}]=0.1 \mathrm{M}$
$[B]=0 M$
$[C]=O M$
When the system reaches equilibrium, we assume that X moles of A are used up but 0.1-x moles remain. This produces X moles of B and X moles of C

Equilibrium concentrations:
$[A]=0.1-X$
$[B]=X$
$[C]=X$
$K c=[B][C] /[A]=x^{\wedge} 2 /(0.1-X)=3 \times 10-6$
At this point I'm going to make an assumption that, since $K c$ is so small, then $(0.1-X) \Rightarrow 0.1$.
$x^{\wedge} 2=3 \times 10^{\wedge}-6 \times 0.1=3 \times 10-7$
$X=[B]=\operatorname{sqrt}\left(3 \times 10^{\wedge}-7\right)=5.48 \times 10^{\wedge}-4 M$

