Answer on Question \#52490 - Chemistry - Inorganic Chemistry

Question:

a) If 1.00 mol of H_{2} is allowed to react with 1.00 mol of I_{2} in a $10 . \mathrm{L}$ reaction vessel at 700 K , what are the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI at equilibrium given that Kc is 57.0 ?
b) What are their concentrations in $\mathrm{mol} / \mathrm{L}$?
c) If 0.100 M of H 2 is allowed to react with 0.200 M of I 2 in a reaction vessel at 700 K , what are the concentrations of $\mathrm{H} 2, \mathrm{I} 2$, and HI at equilibrium given that Kc is 57.0 ?

Answer:

The reaction occurs: $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
The equilibrium equation for the reaction: $\mathrm{K}_{\mathrm{c}}=\mu_{3}{ }^{2} / \mu_{1} \times \mu_{2}$, where μ_{1} - equilibrium concentration of H_{2}, μ_{2} - equilibrium concentration of I_{2}, μ_{3} - equilibrium concentration of HI .

If $\mathbf{y ~ m o l} / \mathrm{l}$ of H_{2} reacts then $\mu_{1}=0.1 \mathrm{M}-\mathrm{y}, \mu_{2}=0.2 \mathrm{M}-\mathrm{y}, \mu_{3}=2 \mathrm{y}$.
Thus, $K_{c}=57=4 y^{2} /((0.1-y)(0.2-y))$,
$57 \times\left(0.02-0.1 y-0.2 y+y^{2}\right)=4 y^{2}$
$1.14-17.1 y+57 y^{2}=4 y^{2}$
$53 y^{2}-17.1 y+1.14=0$
$y=0.093 ; 0.228$. Only the first value has a physical sense. Therefore this is used for the further calculations:
$\mathrm{H}_{2}: \mu_{1}=0.1-0.093 \mathrm{M}=0.007 \mathrm{M}=0.007 \mathrm{~mol} / \mathrm{l}$
$\mathrm{I}_{2}: \mu_{2}=0.2-0.093 \mathrm{M}=0.107 \mathrm{M}=0.107 \mathrm{~mol} / \mathrm{l}$
$\mathrm{HI}: \mu_{3}=0.186 \mathrm{M}=0.186 \mathrm{~mol} / \mathrm{l}$
Comment: 1 mol in 10 L equals 0.100 M . So answers a) and c) are identical.

