Answer on Question\#52466-Chemistry - Physical Chemistry
(a) Deduce the SI units for the gas constant, R.

In order to derive this, we'll use the ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$ (i)
From this equation, $\mathrm{R}=\mathrm{PV} / \mathrm{nT}$ (ii)
Now, at NTP conditions (Normal temperature and pressure)
$\mathrm{P}=101.325 \mathrm{kPa}$;
$\mathrm{V}=22.4 \mathrm{~L} ; \mathrm{T}=273 \mathrm{~K}$;
$\mathrm{n}=1$ mole.
Plugging these values in (ii) we get
$R=101.325 \times 22.4 /(273 \times 1)=8.313 \mathrm{kPa}^{*} \mathrm{~L}^{*} \mathrm{~K}^{-1 *} \mathrm{~mol}^{-1}$
(b) Define the following terms: (1×2) (i) Catalyst (ii) Adsorption
(i) Catalyst - a substance that speeds up a chemical reaction, but is not consumed by the reaction; hence a catalyst can be recovered chemically unchanged at the end of the reaction it has been used to speed up, or catalyze.
(ii) Adsorption - the adhesion of atoms, ions, or molecules from a gas, liquid, or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent.

