Answer on Question \#52136, Chemistry, Other

Task:

Consider the following balanced equation: $\mathbf{N}_{\mathbf{2}}+\mathbf{3 H _ { 2 }} \rightarrow \mathbf{2} \mathbf{N H}_{3}$

a) When 4.50 mole of H_{2} react, how many grams of N_{2} are needed?
b) How many grams of H_{2} are required to produce 27.0 g of NH_{3} ?

Answer:

a) According to the given equation $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, number of moles of H_{2} is 3 times greater than N_{2}.

$$
\begin{aligned}
& v\left(N_{2}\right)=\frac{v\left(H_{2}\right)}{3}=\frac{4.5}{3}=1.5 \mathrm{moles} \\
& v=\frac{m}{M} \quad m=v M \\
& M\left(N_{2}\right)=28 \mathrm{~g} / \mathrm{mol} \\
& m\left(N_{2}\right)=1.5 \cdot 28=42 \mathrm{~g}
\end{aligned}
$$

$$
v\left(\mathrm{NH}_{3}\right)=\frac{m\left(\mathrm{NH}_{3}\right)}{M\left(\mathrm{NH}_{3}\right)}
$$

$$
M\left(\mathrm{NH}_{3}\right)=17.0 \mathrm{~g} / \mathrm{mol}
$$

b) $v\left(\mathrm{NH}_{3}\right)=\frac{27.0}{17.0}=1.6 \mathrm{~mol}$

$$
\begin{aligned}
& v\left(\mathrm{H}_{2}\right)=\frac{3 \cdot v\left(\mathrm{NH}_{3}\right)}{2}=\frac{3 \cdot 1.6}{2}=2.4 \mathrm{moles} \\
& M\left(\mathrm{H}_{2}\right)=2 \mathrm{~g} / \mathrm{mol} \\
& m\left(\mathrm{H}_{2}\right)=2.4 \cdot 2=4.8 \mathrm{~g}
\end{aligned}
$$

