Answer on Question \#52020, Chemistry, Physical Chemistry

Question: If 150 mL 0.1 M NaOH and 100 mLL 0.1 M CH 3 COOH is mixed to make a buffer, what is the pH of this buffer? $\mathrm{ka}=1.8^{*} 10^{\wedge}-5$

Answer:

The pH can be founded by using of Henderson-Hasselbalch equation:

$$
p H=p K a+\log \frac{[\mathrm{NaOH}]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

The number of moles of $\mathrm{NaOH}=0.1 \mathrm{M}^{*} 0.150 \mathrm{~L}=0.015$ moles.
The number of moles of $\mathrm{CH} 3 \mathrm{COOH}=0.1 \mathrm{M}^{*} 0.1 \mathrm{~L}=0.01$ moles
$\mathrm{pKa}=-\log \mathrm{Ka}=4.75$
So,

$$
p H=4.75+\log \frac{0.015}{0.01}=4.93
$$

