Answer on Question \#51830 - Chemistry- Physical Chemistry

Question:

In a closed system $\mathrm{A}(\mathrm{s})=2 \mathrm{~B}(\mathrm{~g})+3 \mathrm{C}(\mathrm{g})$ if the partial pressure of C is doubled then partial pressure of B will be?

Answer:

For the closed system

$$
\mathrm{A}(\mathrm{~s}) \rightleftharpoons_{2 \mathrm{~B}(\mathrm{~g})}+3 \mathrm{C}(\mathrm{~g})
$$

$$
\begin{aligned}
& \mathrm{Kp}=(\mathrm{pG})^{2} \times(\mathrm{pC})^{3} \\
& \Rightarrow \frac{\mathbf{K}_{\mathrm{p}}}{\left(\mathrm{FC}^{\mathrm{q}}\right)}=\left(\mathrm{PB}_{\mathrm{B}}\right) \\
& \text { equation } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { since } K p \text { is constant thus if we double the partial pressure of } C \text { then } p^{\prime} C=2 p_{C} \\
& K p=\left(p^{\prime} \mathrm{B}\right)^{2} \times\left(\mathrm{p}^{\prime} \mathrm{C}\right)^{3} \\
& K p=\left(p_{\mathrm{B}}\right)^{2} \times\left(2 \mathrm{p}_{\mathrm{C}}\right)^{3} \\
& \frac{K_{\mathrm{p}}}{\left({ }_{(2 \mathrm{PC}}\right)^{2}}=\left(\mathrm{P}^{\prime}{ }^{\mathrm{B}}\right)^{\mathrm{Z}} \\
& \frac{\mathbf{K}_{\mathrm{p}}}{8\left(\mathrm{PC}^{\mathrm{q}}{ }^{2}\right.}=\left(\mathrm{P}^{\prime}{ }_{\mathrm{B}}\right)
\end{aligned}
$$

From equation 1
$\frac{1}{8}\left(\mathrm{~PB}^{\mathrm{P}}\right)=\left(\mathrm{P}^{\prime}{ }^{\mathrm{B}}\right)$ $\mathbf{P}^{\prime} \mathbf{B}=\frac{1}{2 \sqrt{2}} \mathbf{P B}_{\mathbf{B}}$ Thus pressure of \mathbf{B} component will reduce by a factor of $2 \sqrt{2}$.

