Answer on Question #51830 - Chemistry- Physical Chemistry

Question:

In a closed system A(s) = 2B(g) + 3C(g) if the partial pressure of C is doubled then partial pressure of B will be?

Answer:

For the closed system:

$$\begin{aligned} & \text{Kp} = (\text{pB})^2 \times (\text{pC})^3 \\ \Rightarrow & \frac{\kappa_p}{\left(\mathbf{p_C}\right)^3} = \left(\mathbf{p_B}\right)^3 \quad \dots \quad \text{equation 1} \end{aligned}$$

since Kp is constant thus if we double the partial pressure of C then p'C = 2pC

$$\mathsf{Kp} = (\mathsf{p'B})^2 \times (\mathsf{p'C})^3$$

$$Kp = (p'_B)^2 \times (2p_C)^3$$

$$\frac{K_{\mathbf{p}}}{\left(2\mathbf{p}_{\mathbf{C}}\right)^{2}} = \left(\mathbf{p'}_{\mathbf{B}}\right)^{2}$$

$$\frac{K_{p}}{8\left(p_{C}^{2}\right)} = \left(p'_{B}\right)$$

From equation 1

$$\frac{1}{8} \left(\mathbf{p_B}^{^{^{\mathbf{g}}}} \right) \; = \; \left(\mathbf{p'_B}^{^{\mathbf{g}}} \right)$$

$$\mathbf{p'}_B = \frac{1}{2\sqrt{2}} \ \mathbf{p}_B$$

Thus pressure of B component will reduce by a factor of $2\sqrt{2}$.

https://www.AssignmentExpert.com