Answer to Question \#51829, Chemistry, Physical Chemistry

The value of $\mathrm{K}_{\mathrm{c}}=4.24$ at 800 K for the reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
Calculate the equilibrium concentration of $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$ at 800 K , if only CO and H 2 O are present initially at concentration of 0.10 M each?

Solution:

```
\(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})\)
```

$$
\begin{gathered}
K_{c}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{x \times x}{(0.1-x)(0.1-x)}=4.24 \\
x^{2}=4.24 \times(0.1-x)^{2} \\
x^{2}=4.24 \times\left(0.01-0.2 x+x^{2}\right) \\
x^{2}=0.0424-0.848 x+4.24 x^{2} \\
3.24 x^{2}+0.0424-0.848 x=0 \\
x=0.194 \\
x=0.067
\end{gathered}
$$

Answer

$\left[\mathrm{CO}_{2}\right]=0.067 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=0.067 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=0.033 \mathrm{M}$
[CO] $=0.033 \mathrm{M}$

