Answer on Question \#51728 - Chemistry - General Chemistry

Question:

A flow of 150 GPM is to be treated with 2.4 percent (0.2 pounds per gallon) solution of sodium Fluoride (NaF). The water to be treated contains $0.5 \mathrm{mg} / \mathrm{L}$ of fluoride ion and the desired fluoride ion concentration is $1.4 \mathrm{mg} / \mathrm{L}$. What is the sodium feed rate in gallons per day? Assume the sodium fluoride purity of 43.4 percent.

Answer:

Required amount of Sodium Fluoride (100\%) for 1 L :
$1.4-0.5=0.9 \mathrm{mg} / \mathrm{L}=9 \cdot 10^{-7} \mathrm{~kg} / \mathrm{l}$
$1 \mathrm{~kg} / \mathrm{l}=8.35 \mathrm{lb} / \mathrm{gal}$
$9 \cdot 10^{-7} \mathrm{~kg} / \mathrm{l}=6.26 \cdot 10^{-5} \mathrm{lb} / \mathrm{gal}$

Amount of NaF in the solution:
($0.2 \mathrm{lb} / \mathrm{gal}$) $\times 0.434=0.0868 \mathrm{lb} / \mathrm{gal}$

Amount of NaF required to treat the actual water flow:

- actual flowrate $=150 \mathrm{gal} / \mathrm{min}$
- NaF required: $6.26 \cdot 10^{-5} \mathrm{lb} / \mathrm{gal} \times 150 \mathrm{gal} / \mathrm{min}=0.00939 \mathrm{lb} / \mathrm{min}$

Required flow of NaF solution: ($0.0868 \mathrm{lb} / \mathrm{min}$) / ($0.00939 \mathrm{lb} / \mathrm{gal})=9.24 \mathrm{gal} / \mathrm{min}=13311$ gal/day

