Answer on Question \#51553 - Chemistry - Other

Question

If you have 100 g of NaOH and 100 g of Al to perform the reaction, how many grams of H_{2} will you produce?
$6 \mathrm{NaOH}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{s})=2 \mathrm{NA}_{3} \mathrm{AlO}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})$

Answer:

Molar masses of the reactants equal:

$$
\mathrm{M}(\mathrm{NaOH})=40 \mathrm{~g} / \mathrm{mol}, \quad \mathrm{M}(\mathrm{Al})=27 \mathrm{~g} / \mathrm{mol}
$$

Number of moles of the reactants are:

$$
\begin{aligned}
n(A l) & =\frac{m(A l)}{M(A l)}=\frac{100}{27}=3.7 \mathrm{~mol} \\
n(\mathrm{NaOH}) & =\frac{m(\mathrm{NaOH})}{M(\mathrm{NaOH})}=\frac{100}{40}=2.5 \mathrm{~mol}
\end{aligned}
$$

Then we make a proportion:
2 moles of Al react with 6 moles of NaOH
3.7 moles of $\mathrm{Al}-x$ moles of NaOH

$$
x=\frac{3.7 \cdot 6}{2}=11.1 \text { moles of } \mathrm{NaOH} \text { should react with } 3.7 \text { moles of } \mathrm{Al}
$$

There are only 2.5 moles of sodium hydroxide, therefore it is the limiting reactant.
We need to make another proportion to calculate the mass of H_{2} that could be produced by the chemical reaction:

$$
\begin{gathered}
6 \text { moles of } \mathrm{NaOH} \text { produce } 3 \text { moles of } \mathrm{H}_{2} \\
2.5 \text { moles of } \mathrm{NaOH}-x \text { moles of } \mathrm{H}_{2} \\
x=\frac{2.5 \cdot 3}{6}=1.25 \text { moles of } \mathrm{H}_{2} \text { could be produced }
\end{gathered}
$$

The mass of H_{2} equals:

$$
m\left(H_{2}\right)=n\left(H_{2}\right) \cdot M\left(H_{2}\right)=1.25 \cdot 2=2.5 g
$$

Answer: 2.5 g of H_{2}

