Answer on Question\#51491, Chemistry, Organic Chemistry

Question:

Nitric acid is produced commercially by the Ostwald process, represented by the following equations.
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) 2 \mathrm{NO}_{2}(\mathrm{~g})$
$3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$

What mass in kg of NH3 must be used to produce 1.2106 kg HNO 3 by the Ostwald process, assuming 100\% yield in each reaction? Show all work

Solution:

The ratio of $\mathrm{NH}_{3}: \mathrm{NO}=1: 1$ (first equation)
The ratio of $\mathrm{NO}: \mathrm{NO}_{2}=1: 1$ (second equation)
The ratio of $\mathrm{NO}_{2}: \mathrm{HNO}_{3}=3: 2$ (third equation)
Therefore, 3 moles of NH_{3} will produce 2 moles of HNO_{3}
$\mathrm{n}\left(\mathrm{HNO}_{3}\right)=1.2 \times 10^{6}(\mathrm{~kg}) \cdot 1000\left(\mathrm{~g} \cdot \mathrm{~kg}^{-1}\right) / 63\left(\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)=1.9 \cdot 10^{7}(\mathrm{~mol})$
$\mathrm{n}\left(\mathrm{NH}_{3}\right)=1.9 \cdot 10^{7}(\mathrm{~mol}) \cdot(3 / 2)=2.85 \cdot 10^{7}(\mathrm{~mol})$
$\mathrm{m}\left(\mathrm{NH}_{3}\right)=2.85 \cdot 10^{7}(\mathrm{~mol}) \cdot 17\left(\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)=4.85 \cdot 10^{8}(\mathrm{~g})$
Answer: $4.85 \cdot 10^{5} \mathrm{~kg}$ of NH_{3}.

