Answer on Question #51214 – Chemistry – Physical Chemistry

Question:

An aqueous solution containing $10.00 \times 10-4$ kg of a solute in $8.00 \times 10-2$ kg of water was found to freeze at 272.72 K. Calculate the molar mass of the solute. Molar enthalpy of fusion of ice at its melting point 273.15 K is 6021 J mol-1.

Solution:

According to the equation of cryoscopy:

 $\Delta T = K \times C$, where $\Delta T = T$ (the freeze of pure solvent) – T(the freeze of solution),

C- molality is defined N(the number of moles of compound)/m(the mass of solvent)

K – cryoscopic constant, K(water) = 1.853 K kg/mol.

Thus, $\Delta T = 273.15 \text{ K} - 272.72 \text{ K} = 0.43 \text{ K}$

 $C = \Delta T/K = 0.232056 \text{ mol/kg},$

 $N = C \times m(water) = 0.23056 \text{ mol/kg} \times 0.008 \text{ kg} = 0.0185645 \text{ mol}$

Molar weight of the solute is: $M_w = m(solute)/N = 1 g / 0.0185645 mol = 53.87 g/mol$

Answer: 53.87 g/mol