Question \#51039, Chemistry, Physical Chemistry

On addition of a solute, the vapor pressure of a liquid reduced to $9 / 10$ th of its original value. If 2 gram of solute (molar mass $=100$) is added to 100 grams of the liquid to achieve that reduction then find the molar mass of the solvent assume ideality.

Answer:

$M_{\text {solute }}=100$
$\mathrm{m}_{\text {solute }}=2 \mathrm{~g}$
$\mathrm{m}_{\text {solvent }}=100 \mathrm{~g}$
$\mathrm{P}^{0}=1$
$\mathrm{P}=0.9$
$\mathrm{M}_{\text {solvent }}$ - ?
Raoult's law

$$
\begin{gathered}
\frac{\left(P_{A}^{o}-P_{A}\right)}{P_{A}^{o}}=X_{B} \\
X_{j}=\frac{\nu_{j}}{\sum_{i=1}^{n} \nu_{i}} \\
\left(\mathrm{P}^{0}-\mathrm{P}\right) / \mathrm{P}^{0}=0.1 \\
\mathrm{X}=0.1 \\
\mathrm{n}_{\text {solute }}=2 \mathrm{~g} / 100 \mathrm{~g} / \mathrm{mol}=0.02 \mathrm{~mol} \\
\mathrm{n}_{\text {solvent }}=\left(\mathrm{n}_{\text {solute }}-\mathrm{X}^{*} \mathrm{n}_{\text {solute }}\right) / \mathrm{X} \\
\mathrm{n}_{\text {solvent }}=(0.02-0.1 * 0.02) / 0.1=0.18 \\
\mathrm{M}_{\text {solvent }}=\mathrm{m} / \mathrm{n}_{\text {solvent }}=100 / 0.18=555.5
\end{gathered}
$$

