Answer to Question \#50867, Chemistry, Other

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ What is the theoretical yield of in grams of water if the reaction started with $14.8 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$ and $3.44 \mathrm{~g} \mathrm{O}_{2}$?

Solution:

$\mathrm{C}_{3} \mathrm{H}_{8}$	O_{2}
$\mathrm{m}=14.8 \mathrm{~g}$	$\mathrm{m}=3.44 \mathrm{~g}$
$\mathrm{M}_{\mathrm{r}}=44.0$	$\mathrm{M}_{\mathrm{r}}=32.0$
	$\frac{m}{M_{r}}$
$n=\frac{14.8}{44}=0.34 \mathrm{~mol}$	$n=\frac{3.44}{32}=0.1075 \mathrm{~mol}$
In excess	Will react completely

$$
\begin{gathered}
n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{4}{5} n\left(\mathrm{O}_{2}\right)=\frac{4}{5} \times 0.1075=0.086 \mathrm{~mol} \\
m\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 0.086 \mathrm{~mol}=1.548 \mathrm{~g}
\end{gathered}
$$

Answer:

1.548 g of $\mathrm{H}_{2} \mathrm{O}$

