Answer to Question \#50811, Chemistry, Physical Chemistry

at 425 degree centigrade temperature the equilibrium constant of this reaction is 52.5.if at initial, 1 $\mathrm{mol} \mathrm{H}_{2}$ and $0.75 \mathrm{~mol} \mathrm{I}_{2}$ reacts, then how much HI will be found in equilibrium at mole unit. the ans is 0.0911 mol . but i cant get the solution. please help. the reaction is
$\mathrm{H} 2+12=2 \mathrm{HI}$

Solution:

Chemical reaction is
$\mathrm{H}_{2}+\mathrm{H}_{2}=2 \mathrm{HI}$
So equilibrium constant is described as:

$$
K=\frac{[H I]^{2}}{\left[H_{2}\right]\left[I_{2}\right]}
$$

If in equilibrium will be found \mathbf{x} mol of HI so $\mathbf{2 x}$ mol of H_{2} and I_{2} was converted, than in equilibrium will be 1-x of H_{2} and 0.75 -x of I_{2}. So we have:

$$
\begin{gathered}
K=\frac{4 x^{2}}{(1-x)(0.75-x)}=52.5 \\
4 x^{2}=52.5(1-x)(0.75-x) \\
4 x^{2}=39.375-52.5 x-39.375 x+52.5 x^{2} \\
52.5 x^{2}-4 x^{2}-91.875 x+39.375=0 \\
48.5 x^{2}-91.875 x+39.375=0
\end{gathered}
$$

This equation has two possible solutions:

$$
\begin{aligned}
& x=1.239 \\
& x=0.655
\end{aligned}
$$

Solved for $\mathrm{x}=0.655$
So, maybe there is mistake in Question, because
$\mathrm{n}(\mathrm{HI})=0.655 / 2=0.3275 \mathrm{~mol}$

Answer:

0.3275 mol

