Answer to Question \#50748, Chemistry, Physical Chemistry

Deduce the SI units for the gas constant, R.

Solution:

In order to derive this, we'll use the ideal gas equation,

$$
p \times V=n \times R \times T
$$

From this equation,

$$
R=\frac{p \times V}{n \times T}
$$

Now, at NTP conditions(Normal temperature and pressure)
$\mathrm{P}=101325 \mathrm{~Pa}$
$\mathrm{V}=22.4 \mathrm{~L}=0.0224 \mathrm{~m}^{3}$
$\mathrm{T}=273 \mathrm{~K}$
$\mathrm{n}=1$ mole.

Plugging these values in we get

$$
R=\frac{101325 \mathrm{~Pa} \times 0.0224 \mathrm{~m}^{3}}{1 \mathrm{~mol} \times 273 \mathrm{~K}}=8.313 \frac{\mathrm{~Pa} \times \mathrm{m}^{3}}{\mathrm{~K} \times \mathrm{mol}}
$$

https://www.AssignmentExpert.com

