Answer on Question \#50437, Chemistry, Other

Task:

1) If an electric discharge produces $800 \mathrm{~cm}^{3}$ of ozone $\left(\mathrm{O}_{3}\right)$, how many cm^{3} of oxygen $\left(\mathrm{O}_{2}\right)$ are required?
$3 \mathrm{O}_{2}(\mathrm{~g})--->\mathrm{O}_{3}(\mathrm{~g})$
2. When $75.0 \mathrm{dm}^{3}$ of O_{2} react with an excess of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right)$, according to the reaction below, what volume of carbon dioxide will be produced?
$6 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \cdots \mathbf{~}-->\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+6 \mathrm{CO}_{2}(\mathrm{~g})$
3. If an excess of nitrogen gas reacts with 250 L of hydrogen gas, according to the reaction below, how many L of ammonia will be produced?
$\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})-->2 \mathrm{NH}_{3}(\mathrm{~g})$
4. How many cm^{3} of oxygen would be required to react completely with $432 \mathrm{~cm}^{3}$ of hydrogen gas according to the reaction below?
$\mathbf{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->\mathbf{2 H}_{2} \mathrm{O}(\mathrm{g})$

Answer:

$$
v=\frac{V}{22.4}
$$

1) $v\left(O_{3}\right)=\frac{0.8}{22.4}=0.036 \mathrm{~mol}$

$$
\begin{aligned}
& v\left(O_{2}\right)=\frac{3}{2} v\left(O_{3}\right)=\frac{3}{2} \cdot 0.036=0.054 \mathrm{~mol} \\
& V\left(O_{2}\right)=22.4 \cdot v=22.4 \cdot 0.054=1.21 \mathrm{l}=1210 \mathrm{~cm}^{3} \\
& v=\frac{V}{22.4}
\end{aligned}
$$

2) $v\left(O_{2}\right)=\frac{75}{22.4}=3.35 \mathrm{~mol}$
$v\left(\mathrm{O}_{2}\right)=v\left(\mathrm{CO}_{2}\right)=3.35 \mathrm{~mol}$
$V\left(\mathrm{CO}_{2}\right)=22.4 \cdot v=22.4 \cdot 3.35=75 \mathrm{l}=75 \mathrm{dm}^{3}$
$v=\frac{V}{22.4}$
3) $v\left(H_{2}\right)=\frac{250}{22.4}=11.16 \mathrm{~mol}$

$$
\begin{aligned}
& v\left(\mathrm{NH}_{3}\right)=\frac{2}{3} v\left(\mathrm{H}_{2}\right)=\frac{2}{3} \cdot 11.16=7.44 \mathrm{~mol} \\
& V\left(\mathrm{NH}_{3}\right)=22.4 \cdot v=22.4 \cdot 7.44=166.7 \mathrm{l} \\
& v=\frac{V}{22.4}
\end{aligned}
$$

4) $v\left(H_{2}\right)=\frac{0.432}{22.4}=0.02 \mathrm{~mol}$

$$
\begin{aligned}
& v\left(O_{2}\right)=\frac{1}{2} v\left(H_{2}\right)=\frac{1}{2} \cdot 0.02=0.01 \mathrm{~mol} \\
& V\left(O_{2}\right)=22.4 \cdot v=22.4 \cdot 0.01=0.224 l=224 \mathrm{~cm}^{3}
\end{aligned}
$$

