Answer on Question #50411, Chemistry, Other

<u>Task:</u>

- a) What is the pH of a solution whose $[H_3O^+]$ is 1 X 10 ⁻⁶ M?
- b) What is the pH of a solution whose $[H_3O^+]$ concentration is 3.2 X 10^{-4} M?
- c) What is the pH of a solution with a $[H_3O^+]$ concentration of 1.5 X 10 $^{-13}$ M?
- d) Find the pH of a solution whose $[H_3O^+]$ is 6.5 X 10 ⁻⁴ M.
- e) Find the pH of a solution whose pOH is 5.36.
- f) What is the pOH of a solution with a $[OH^{-}]$ concentration of 9.7 X 10 $^{-11}$ M?
- g) Calculate the pH of a solution with a [OH $^{-1}$] concentration of 2.3 X 10 $^{-7}$ M.

Answer:

a)
$$pH = -\lg[H_3O^+]$$

$$pH = -\lg[1 \cdot 10^{-6}] = 6$$

b)
$$pH = -\lg[H_3O^+]$$

$$pH = -\lg[3.2 \cdot 10^{-4}] = 3.5$$

c)
$$pH = -\lg[H_3O^+]$$

$$pH = -\lg[1.5 \cdot 10^{-13}] = 12.8$$

d)
$$pH = -\lg[H_3O^+]$$

$$pH = -\lg[6.5 \cdot 10^{-4}] = 3.2$$

$$pH + pOH = 14$$

e)
$$pH = 14 - pOH = 14 - 5.36 = 8.64$$

 $pOH = -lg[OH^{-}]$

f)
$$pOH = -lg[9.7 \cdot 10^{-11}] = 10$$

g)
$$pOH = -\lg[OH]$$

 $pOH = -\lg[2.3 \cdot 10^{-7}] = 6.6$

https://www.AssignmentExpert.com