Answer on Question #50410, Chemistry, Other

- 1. How many moles of water does 6.02x10²³ molecules represent?
- 2.Convert 3.01x10²³ molecules of C₂H₆ to moles.
- 3. How many moles of glucose does 1.2x10²⁴ formula units represent?
- 4. How many moles of CaCl₂ does 2.41x10²⁴ formula units represent?

Solution 1:

$$n = \frac{N}{N_A}$$
 N_A = 6.02 × 10²³

$$n = \frac{6.02 \times 10^{23}}{6.02 \times 10^{23} \text{ mol}^{-1}} = 1 \text{ mol}$$

Answer 1:

1 mol of water

Solution 2:

$$n = \frac{N}{N_A}$$
 N_A = 6.02×10^{23}

$$n = \frac{3.01 \times 10^{23}}{6.02 \times 10^{23} \, mol^{-1}} = 0.5 \, mol$$

Answer 2:

0.5 moles of C₂H₆

Solution 3:

$$n = \frac{N}{N_A}$$
 N_A = 6.02×10^{23}

$$n = \frac{1.2 \times 10^{24}}{6.02 \times 10^{23} \ mol^{-1}} = 1.99 \ mol$$

Answer 3:

1.99 moles of glucose

Solution 4:

$$n=rac{N}{N_A}$$
 $N_A=6.02 imes10^{23}$
$$n=rac{2.41 imes10^{24}}{6.02 imes10^{23}\ mol^{-1}}=4\ mol$$

Answer 4:

4 moles of CaCl₂