Answer on Question \#50410, Chemistry, Other

1. How many moles of water does 6.02×10^{23} molecules represent?
2.Convert 3.01×10^{23} molecules of $\mathrm{C}_{2} \mathrm{H}_{6}$ to moles.
2. How many moles of glucose does 1.2×10^{24} formula units represent?
3. How many moles of CaCl_{2} does 2.41×10^{24} formula units represent?

Solution 1:

$$
n=\frac{N}{N_{A}}
$$

$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$

$$
n=\frac{6.02 \times 10^{23}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}
$$

Answer 1:
1 mol of water

Solution 2:

$N_{A}=6.02 \times 10^{23}$

$$
n=\frac{N}{N_{A}}
$$

$$
n=\frac{3.01 \times 10^{23}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=0.5 \mathrm{~mol}
$$

Answer 2:

0.5 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$

Solution 3:

$$
n=\frac{N}{N_{A}}
$$

$N_{A}=6.02 \times 10^{23}$

$$
n=\frac{1.2 \times 10^{24}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=1.99 \mathrm{~mol}
$$

Answer 3:

1.99 moles of glucose

Solution 4:

$$
n=\frac{N}{N_{A}}
$$

$N_{A}=6.02 \times 10^{23}$

$$
n=\frac{2.41 \times 10^{24}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=4 \mathrm{~mol}
$$

Answer 4:
4 moles of CaCl_{2}

