Question:

1. How many atoms does 2.0 moles of He represent?
2. How many sodium ions are in 3.0 moles of NaCl ?
3. How many molecules are in 0.25 moles of CH_{4} ?
4. How many total atoms are in 1.0 moles of $\mathrm{H}_{2} \mathrm{O}$?

Answer:

1. How many atoms does 2.0 moles of He represent?

We use the following formula to calculate the number of atoms:
$\mathrm{n}(\mathrm{mol})=\mathrm{N}\left(\right.$ number of atoms $/ \mathrm{N}_{\mathrm{A}}$
$\mathrm{N}(\mathrm{He})=\mathrm{n}(\mathrm{mol}) \cdot \mathrm{N}_{\mathrm{A}}$
$\mathbf{N}(\mathrm{He})=2,0$ moles $\cdot 6.02 \cdot 10^{23}=\mathbf{1 2 . 0 4} \cdot \mathbf{1 0}^{23}$ atoms

2. How many sodium ions are in 3.0 moles of NaCl ?

$\mathrm{n}(\mathrm{mol})=\mathrm{N}$ (number of ions) $/ \mathrm{N}_{\mathrm{A}}$
1 molecule of NaCl contains 1 sodium ion $\left(\mathrm{Na}^{+}\right)$, that's why if we have 3.0 moles of NaCl , we have 3.0 moles of Na^{+}.
N (ions) $=\mathrm{n}(\mathrm{mol}) \cdot \mathrm{N}_{\mathrm{A}}$
N (ions) $=3.0$ moles $\cdot 6.02 \cdot 10^{23}=\mathbf{1 8 . 0 6} \cdot \mathbf{1 0} \mathbf{0}^{\mathbf{2 3}}$ ions
3. How many molecules are in 0.25 moles of CH_{4} ?
$\mathrm{n}(\mathrm{mol})=\mathrm{N}\left(\right.$ number of molecules $/ \mathrm{N}_{\mathrm{A}}$
N (molecules) $=\mathrm{n}(\mathrm{mol}) \cdot \mathrm{N}_{\mathrm{A}}$
N (molecules) $=0.25$ moles $\cdot 6.02 \cdot 10^{23}=\mathbf{1 . 5 0 5} \cdot \mathbf{1 0} \mathbf{0}^{23}$ molecules

4. How many total atoms are in 1.0 moles of $\mathrm{H}_{2} \mathrm{O}$?

1 molecule of $\mathrm{H}_{2} \mathrm{O}$ contains 3 atoms (two hydrogen \& one oxygen), that's why if we have 1.0 moles of $\mathrm{H}_{2} \mathrm{O}$, we have 3.0 moles of atoms.

N (atoms) $=\mathrm{n}(\mathrm{mol}) \cdot \mathrm{N}_{\mathrm{A}}$
N (atoms) $=3.0$ moles $\cdot 6.02 \cdot 10^{23}=\mathbf{1 8 . 0 6} \cdot \mathbf{1 0 ^ { 2 3 }}$ atoms

