Answer on Question \#50342, Chemistry, Other
How many molecules does 36.0 grams of water represent?
How many moles does 80.0 grams of $\mathrm{H}_{2} \mathrm{O}$ represent?
How many moles does 45.0 grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ represent?
How many moles does 22.0 grams of CO_{2} represent?
How many moles does 56.0 grams of N_{2} represent?

Solution:

$$
n=\frac{m}{M_{r}}=\frac{N}{N_{r}}
$$

$\mathrm{M}_{\mathrm{r}}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol}$
$\mathrm{M}_{\mathrm{r}}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=180 \mathrm{~g} / \mathrm{mol}$
$\mathrm{M}_{\mathrm{r}}\left(\mathrm{CO}_{2}\right)=44 \mathrm{~g} / \mathrm{mol}$
$\mathrm{M}_{\mathrm{r}}\left(\mathrm{N}_{2}\right)=28 \mathrm{~g} / \mathrm{mol}$
$\mathrm{N}_{\mathrm{a}}=6.02 \times 10^{23}$
36.0 g of water represents:

$$
N=\frac{m \times N_{r}}{M_{r}}=\frac{36 \mathrm{~g} \times 6.02 \times 10^{23} 1 / \mathrm{mol}}{18 \mathrm{~g} / \mathrm{mol}}=12.04 \times 10^{23}
$$

Answer 1:

12.04×10^{23} particles

80.0 grams of $\mathrm{H}_{2} \mathrm{O}$ represents:

$$
n=\frac{m}{M_{r}}=\frac{80 \mathrm{~g}}{18 \mathrm{~g} / \mathrm{mol}}=4.44 \mathrm{~mol}
$$

Answer 2:

4.44 moles

45.0 grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ represents:

$$
n=\frac{m}{M_{r}}=\frac{45 \mathrm{~g}}{180 \mathrm{~g} / \mathrm{mol}}=0.25 \mathrm{~mol}
$$

Answer 3:

0.25 moles

22.0 grams of CO_{2} represents:

$$
n=\frac{m}{M_{r}}=\frac{22 \mathrm{~g}}{44 \mathrm{~g} / \mathrm{mol}}=0.5 \mathrm{~mol}
$$

Answer 4:

0.5 moles

56.0 grams of N_{2} represents:

$$
n=\frac{m}{M_{r}}=\frac{56 \mathrm{~g}}{28 \mathrm{~g} / \mathrm{mol}}=2 \mathrm{~mol}
$$

Answer 5:
2 moles

