Answer on Question \#50329, Chemistry, Inorganic Chemistry

How many grams of nitrogen and oxygen are dissolved in 125 g of water at $20^{\circ} \mathrm{C}$ when the water is saturated with air, in which $P_{\text {nitrogen }}$ equals 593 torr and $P_{\text {oxygen }}$ equals 159 torr? At 1.00 atm pressure, the solubility of pure oxygen in water is $0.00430 \mathrm{~g} \mathrm{O}_{2} / 100.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$, and the solubility of pure nitrogen in water is $0.00190 \mathrm{~g} \mathrm{~N}_{2} / 100.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?

Solution:

Henry's law can be put into mathematical terms (at constant temperature) as

$$
p=k_{H} \times c
$$

where \mathbf{p} is the partial pressure of the gaseous solute above the solution, \mathbf{c} is the concentration of the dissolved gas and
\mathbf{k}_{H} is a constant with the dimensions of pressure divided by concentration. The constant, known as the Henry's law constant, depends on the solute, the solvent and the temperature.

$$
\begin{gathered}
k_{H}=\frac{p_{0}}{c_{0}}=\frac{1 \mathrm{~atm} \times 100 \mathrm{~g}}{m_{\text {gas } 0}} \\
k_{H}=\frac{p_{\text {partial }}}{c}=\frac{p_{\text {partial }}}{\frac{m_{\text {gas }}}{m_{\text {water }}}}=\frac{p_{\text {partial }} \times m_{\text {water }}}{m_{\text {gas }}} \\
\frac{1 \mathrm{~atm} \times 100 \mathrm{~g}}{m_{\text {gas } 0}}=\frac{p_{\text {partial }} \times m_{\text {water }}}{m_{\text {gas }}} \\
m_{\text {gas }}=\frac{p_{\text {partial }} \times m_{\text {water }} \times m_{\text {gas } 0}}{1 \mathrm{~atm} \times 100 \mathrm{~g}}
\end{gathered}
$$

Convertion of torr into atm:

$$
p_{\text {atm }}=\frac{p_{\text {torr }} \times 1 \mathrm{~atm}}{760 \mathrm{torr}}
$$

So:

$$
m_{\text {gas }}=\frac{\frac{p_{\text {torr }} \times 1 \mathrm{~atm}}{760 \text { torr }} \times m_{\text {water }} \times m_{\text {gas } 0}}{1 \mathrm{~atm} \times 100 \mathrm{~g}}=\frac{p_{\text {torr }} \times m_{\text {water }} \times m_{\text {gas } 0}}{760 \text { torr } \times 100 \mathrm{~g}}
$$

Oxygene:

$$
m_{O_{2}}=\frac{159 \operatorname{torr} \times 125 \mathrm{~g} \times 0.00430 \mathrm{~g}}{760 \operatorname{torr} \times 100 \mathrm{~g}}=\frac{85.4625 \mathrm{~g}}{76000}=0.0011245 \mathrm{~g}
$$

Nitrogene:

$$
m_{O_{2}}=\frac{593 \mathrm{torr} \times 125 \mathrm{~g} \times 0.00190 \mathrm{~g}}{760 \mathrm{torr} \times 100 \mathrm{~g}}=\frac{140.8375 \mathrm{~g}}{76000}=0.001853125 \mathrm{~g}
$$

Answer:
0.0011245 g of Oxygene (O_{2})
0.001853125 g of Nitrogene $\left(\mathrm{N}_{2}\right)$

