Answer on Question #50275, Chemistry, Inorganic Chemistry

1.'Na' is a reductant,

 $Na - Na^{+} + e^{-}$

but can it act as an oxidant to become Na-? Is it stable?

2. Na⁵⁺, Na⁴⁺, Na²⁺, are all possible Oxidation number...... but do all exist in real? Does it happens in the case of Halogens?

Answer:

- 1. Table salt, or sodium chloride Na⁺Cl⁻, sodium positive charge is balanced by a negatively charged ion in the empirical formula for this ionic compound. The traditional explanation for this phenomenon is that the loss of one electron from elemental sodium to produce a cation with a single positive charge produces a stable closed-shell electron configuration. Sodium was thought to always form singly charged cations until the discovery of **alkalides** and the same arguments apply to the remainder of the alkali metals. A typical **alkalide** is the sodium natride salt [Na(2,2,2-crypt)]⁺Na⁻. This salt contains both Na⁺ and Na⁻. The cryptand isolates and stabilizes the Na⁺, preventing its reduction by the Na⁻. Dimers of cationic and anionic sodium have also been observed, as has an H⁺Na⁻ salt known as "inverse sodium hydride".
- 2. Na⁵⁺, Na⁴⁺, Na³⁺, Na²⁺, are all possible oxidation numbers but doesn't exist in real. In case of Halogens it happens with all except of Fluorine, and quite stable (chlorine as an example): Cl⁺¹, Cl⁺³, Cl⁺⁵, Cl⁺⁷.