Answer on Question \#50218 - Chemistry - Physical Chemistry

Question:

$\log K_{p} / K_{c}+\log R T=0$ is a relationship for the reaction
(1) $\mathrm{PCl}_{5}=\mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
(2) $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=2 \mathrm{SO}_{3}$
(3) $\mathrm{H}_{2}+\mathrm{I}_{2}=2 \mathrm{HI}$
(4) $\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3}$

Answer:

For the general reaction

$$
\mathrm{a} A+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

the relationship between two equilibrium constants is:

$$
K_{p}=K_{c}{ }^{*}(R T)^{\Delta n}
$$

where, $\quad \Delta n=$ (Total moles of products on the products side) - (Total moles of reactants on the reactants side). Hence $\Delta \mathrm{n}=(\mathrm{d}+\mathrm{c})-(\mathrm{a}+\mathrm{b}) . R$ is the gas constant found in the ideal gas law (0.0821 liter*Atm/Mole/Kelvin), T is the temperature of reaction, Kelvin.

This we can use in a relationship for the reaction:
$\log K_{p} / K_{c}+\log R T=0$
$\log \left(K_{c}{ }^{*}(R T)^{\Delta n} / K_{c}\right)+\log R T=0$
$\left.\log (R T)^{\Delta n}\right)+\log \mathrm{RT}=0$
$\log \left((R T)^{\Delta n *}(R T)=0\right.$
$\log (R T)^{\Delta n+1}=0$
$(R T)^{\Delta n+1}=0$
R is a constant and T is the temperature of reaction, so their product can't be zero. That's why
$\Delta n+1=0 \quad$ and $\quad \Delta n=-1$
So our relationship is true for the reaction (2) $\mathbf{2 S O}_{\mathbf{2}} \mathbf{+ O}_{\mathbf{2}}=\mathbf{2} \mathbf{S O}_{\mathbf{3}}$
Because Δn for this reaction is:
$\Delta n=2-2-1=-1$
Answer:
(2) $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=2 \mathrm{SO}_{3}$

