Answer on Question \#50180, Chemistry, Other

How many molecules does 11.0 g of CO_{2} represent?

Solution:

$$
\begin{gathered}
n=\frac{m}{M_{r}}=\frac{V}{V_{m}}=\frac{N}{N_{a}} \\
\frac{m}{M_{r}}=\frac{N}{N_{a}} \\
N=\frac{m \times N_{a}}{M_{r}}
\end{gathered}
$$

Where \mathbf{m} - mass of compound,
$\mathbf{M}_{\mathbf{r}}$ - molecular mass of compound and
N_{a} - Avogadro constant, $6.022 \times 10^{23} \mathrm{~mol}^{-1}$
In case of $\mathrm{CO} 2 \mathrm{Mr}=12+2 \times 16=44 \mathrm{~g} / \mathrm{mol}$
Thus

$$
N=\frac{11 \mathrm{~g} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}}{44 \mathrm{~g} / \mathrm{mol}}=1.5055 \times 10^{23}
$$

Answer:

1.5055×10^{23} molecules

